Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control.

نویسندگان

  • M L Liu
  • E M Gibbs
  • S C McCoid
  • A J Milici
  • H A Stukenbrok
  • R K McPherson
  • J L Treadway
  • J E Pessin
چکیده

To examine the physiological role of the GLUT4/muscle-fat specific facilitative glucose transporter in regulating glucose homeostasis, we have generated transgenic mice expressing high levels of this protein in an appropriate tissue-specific manner. Examination of two independent founder lines demonstrated that high-level expression of GLUT4 protein resulted in a marked reduction of fasting glucose levels (approximately 70 mg/dl) compared to wild-type mice (approximately 130 mg/dl). Surprisingly, 30 min following an oral glucose challenge the GLUT4 transgenic mice had only a slight elevation in plasma glucose levels (approximately 90 mg/dl), whereas wild-type mice displayed a typical 2- to 3-fold increase (approximately 250-300 mg/dl). In parallel to the changes in plasma glucose, insulin levels were approximately 2-fold lower in the transgenic mice compared to the wild-type mice. Furthermore, isolated adipocytes from the GLUT4 transgenic mice had increased basal glucose uptake and subcellular fractionation indicated elevated levels of cell surface-associated GLUT4 protein. Consistent with these results, in situ immunocytochemical localization of GLUT4 protein in adipocytes and cardiac myocytes indicated a marked increase in plasma membrane-associated GLUT4 protein in the basal state. Taken together these data demonstrate that increased expression of the human GLUT4 gene in vivo results in a constitutively high level of cell surface GLUT4 protein expression and more efficient metabolic control over fluctuations in plasma glucose concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycemic Improvement in Diabetic dbldb Mice by Overexpression of the Human Insulin - regulatable Glucose Transporter ( GLUT 4 )

Introduction The effects of increased GLUT4 (insulin-regulatable muscle/fat glucose transporter) expression on glucose homeostasis in a genetic model of non-insulin-dependent diabetes mellitus were determined by expressing a human GLUT4 transgene (hGLUT4) in diabetic C57BL/KsJ-db/db mice. A genomic hGLUT4 construct was microinjected directly into pronuclear murine embryos of dbl+ matings to mai...

متن کامل

Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4).

The effects of increased GLUT4 (insulin-regulatable muscle/fat glucose transporter) expression on glucose homeostasis in a genetic model of non-insulin-dependent diabetes mellitus were determined by expressing a human GLUT4 transgene (hGLUT4) in diabetic C57BL/KsJ-db/db mice. A genomic hGLUT4 construct was microinjected directly into pronuclear murine embryos of db/+ matings to maintain the inb...

متن کامل

GLUT12: a second insulin‐responsive glucose transporters as an emerging target for type 2 diabetes

Insulin resistance plays a major role in the pathogenesis of type 2 diabetes mellitus. The need for an effective treatment for type 2 diabetes mellitus has, therefore, become increasingly important. The ability of insulin to stimulate glucose uptake into muscle and adipose tissue is important for the maintenance of whole-body glucose homeostasis. Glucose uptake in mammalian cells is mediated by...

متن کامل

Moderate GLUT4 Overexpression Improves Insulin Sensitivity and Fasting Triglyceridemia in High-Fat Diet–Fed Transgenic Mice

The GLUT4 facilitative glucose transporter mediates insulin-dependent glucose uptake. We tested the hypothesis that moderate overexpression of human GLUT4 in mice, under the regulation of the human GLUT4 promoter, can prevent the hyperinsulinemia that results from obesity. Transgenic mice engineered to express the human GLUT4 gene and promoter (hGLUT4 TG) and their nontransgenic counterparts (N...

متن کامل

The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration

Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 90 23  شماره 

صفحات  -

تاریخ انتشار 1993